Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass
نویسندگان
چکیده
BACKGROUND Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G) bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses), must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant. RESULTS Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external part of the cell wall in sugarcane) are likely the first to be released and assimilated by both species of fungi. At all time points tested, A. niger produced more enzymes (quantitatively and qualitatively) than T. reesei. However, the most important enzymes related to biomass degradation, including cellobiohydrolases, endoglucanases, β-glucosidases, β-xylosidases, endoxylanases, xyloglucanases, and α-arabinofuranosidases, were identified in both secretomes. We also noticed that the both fungi produce more enzymes when grown in culm as a single carbon source. CONCLUSION Our work provides a detailed qualitative and semi-quantitative secretome analysis of A. niger and T. reesei grown on sugarcane biomass. Our data indicate that a combination of enzymes from both fungi is an interesting option to increase saccharification efficiency. In other words, these two fungal species might be combined for their usage in industrial processes.
منابع مشابه
Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods
The cultivation procedure and the fungal strain applied for enzyme production may influence levels and profile of the proteins produced. The proteomic analysis data presented here provide critical information to compare proteins secreted by Trichoderma reesei and Aspergillus niger when cultivated through submerged and sequential fermentation processes, using steam-explosion sugarcane bagasse as...
متن کاملComparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse
BACKGROUND The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme profile of a newly isolated Trichoderma asperellum S4F8 strain with that of Tr...
متن کاملProduction and Optimization of Cellulase Enzyme Using Aspergillus niger USM AI 1 and Comparison with Trichoderma reesei via Solid State Fermentation System
Novel design solid state bioreactor, FERMSOSTAT, had been evaluated in cellulase production studies using local isolate Aspergillus niger USM AI 1 grown on sugarcane bagasse and palm kernel cake at 1 : 1 (w/w) ratio. Under optimised SSF conditions of 0.5 kg substrate; 70% (w/w) moisture content; 30°C; aeration at 4 L/h · g fermented substrate for 5 min and mixing at 0.5 rpm for 5 min, about 3.4...
متن کاملComparative Study of Cellulase Production by Aspergillus niger and Trichoderma viride Using Solid State Fermentation On Cellulosic Substrates Corncob, Cane Bagasse and Sawdust
The enzyme activities of Trichoderma viride and Aspergillus niger grown on various waste cellulosic materials such as corncobs, saw dust and sugarcane baggase were tested for a period of 192 hrs. The maximum activity of 0.33 mg/min/ml & 0.026 mg/min/ml of cellulase enzyme were found to be produced on saw dust after 144 hrs by Aspergillus niger & Trichoderma viride, respectively. Corncob showed ...
متن کاملComparative kinetic analysis of two fungal β-glucosidases
BACKGROUND The enzymatic hydrolysis of cellulose is still considered as one of the main limiting steps of the biological production of biofuels from lignocellulosic biomass. It is a complex multistep process, and various kinetic models have been proposed. The cellulase enzymatic cocktail secreted by Trichoderma reesei has been intensively investigated. beta-glucosidases are one of a number of c...
متن کامل